7 research outputs found

    Positional information, positional error, and read-out precision in morphogenesis: a mathematical framework

    Full text link
    The concept of positional information is central to our understanding of how cells in a multicellular structure determine their developmental fates. Nevertheless, positional information has neither been defined mathematically nor quantified in a principled way. Here we provide an information-theoretic definition in the context of developmental gene expression patterns and examine which features of expression patterns increase or decrease positional information. We connect positional information with the concept of positional error and develop tools to directly measure information and error from experimental data. We illustrate our framework for the case of gap gene expression patterns in the early Drosophila embryo and show how information that is distributed among only four genes is sufficient to determine developmental fates with single cell resolution. Our approach can be generalized to a variety of different model systems; procedures and examples are discussed in detail

    Fly wing vein patterns have spatial reproducibility of a single cell

    Get PDF
    Developmental processes in multicellular organisms occur in fluctuating environments and are prone to noise, yet they produce complex patterns with astonishing reproducibility. We measure the left-right and inter-individual precision of bilaterally symmetric fly wings across the natural range of genetic and environmental conditions and find that wing vein patterns are specified with identical spatial precision and are reproducible to within a single-cell width. The early fly embryo operates at a similar degree of reproducibility, suggesting that the overall spatial precision of morphogenesis in Drosophila performs at the single-cell level. Could development be operating at the physical limit of what a biological system can achieve
    corecore